ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ИВАНОВСКОЙ ОБЛАСТИ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИВАНОВСКИЙ ЖЕЛЕЗНОДОРОЖНЫЙ КОЛЛЕДЖ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.04 Электронная техника

для специальностей среднего профессионального образования по программам подготовки специалистов среднего звена технического профиля

27.02.03. Автоматика и телемеханика на транспорте (железнодорожном транспорте)

Срок обучения: 3 года 10 месяцев

Разработчик:

ОГБПОУ Ивановский железнодорожный колледж Преподаватель: Якимычева Е.Н.

Введена в действие с «01» сентября 2021 года

Разработана на основе требований ΦΓΟС среднего профессионального образования, предъявляемых структуре, содержанию и результатам освоения учебной дисциплины ОП.04 «Электронная техника», с учетом требований ФГОС СПО Приказ № 139 от 28 февраля 2018 и получаемой специальности среднего профессионального образования 27.02.03. Автоматика и телемеханика на транспорте (железнодорожном транспорте)

РАССМОТРЕНА на МК техника и технологии наземного транспорта

Протокол № 1 от «31» августа 2021 г.

Председатель ______/Е. Н. Якимычева/

СОДЕРЖАНИЕ

1.	ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	Стр.
2.	СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2	УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИ	5
3.	условия геализации гавочеи программы учевной дисципли	11
4.	контроль и оценка результатов освоения учебной дисципли	ины

1.ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП. 04 «Электронная техника»

1.1. Область применения программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 270203 Автоматика и телемеханика на транспорте (железнодорожном транспорте).

Рабочая программа учебной дисциплины может быть использована при профессиональной подготовке, повышении квалификации и переподготовке рабочих по профессиям:

- 23.01.14 Электромонтер по обслуживанию и ремонту устройств сигнализации, централизации и блокировки;
- 08.01.16 Электромонтажник по сигнализации, централизации и блокировке на железнодорожном транспорте и наземных линиях метрополитена

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы:

профессиональный цикл, общепрофессиональная дисциплина

1.3.Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:

В результате освоения учебной дисциплины студент должен уметь:

- снимать и строить характеристики электронных приборов;
- рассчитывать основные параметры приборов по характеристикам;
- пользоваться справочником по электронным приборам.

В результате освоения дисциплины студент должен иметь представление:

- о роли и месте знаний по дисциплине «Электронная техника» при освоении смежных дисциплин по выбранной специальности и о сфере профессиональной деятельности;
- о процессах, происходящих в электронных приборах (электронных лампах, транзисторах, тиристорах и т.д.);

В результате освоения дисциплины студент должен знать:

- устройство и принцип работы основных электронных приборов;
- применение электронных приборов в технике.

Код	Наименование результата обучения					
OK 01	Выбирать способы решения задач профессиональной деятельности					
	применительно к различным контекстам;					
OK 02	Осуществлять поиск, анализ и интерпретацию информации, необходимой для					
	выполнения задач профессиональной деятельности;					
OK 03	Планировать и реализовывать собственное профессиональное и личностное					
	развитие;					
OK 04	Работать в коллективе и команде, эффективно взаимодействовать с					
	коллегами, руководством, клиентами					
ОК 09	Использовать информационные технологии в профессиональной деятельности					

- ПК 1.1. Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики по принципиальным схемам;
- ПК 1.2. Определять и устранять отказы в работе станционных, перегонных, микропроцессорных и диагностических систем автоматики;
- ПК 2.3. Выполнять работы по техническому обслуживанию линий железнодорожной автоматики.
- ПК 2.7. Составлять и анализировать монтажные схемы устройств сигнализации, централизации и блокировки, железнодорожной автоматики и телемеханики по принципиальным схемам.

1.4. Количество часов на освоение программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 125 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 125 часов;

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	149
консультации	18
Обязательная аудиторная учебная нагрузка (всего)	125
в том числе:	
лабораторно – практические работы	52
Промежуточная аттестация экзамен	

Тематический план и содержание учебной дисциплины «Электронная техника»

Помусторожно тог	«Электронная техн	ı	Vnoncer	Коды
Наименование тем	Содержание учебного	Объем	Уровень	
	материала, практические	часов	усвоения	компетенций,
	работы, самостоятельная			формированию,
	работа студентов			которых способствует
				элемент
				программы
1	2	3	4	4
1	Раздел 1.	13	7	7
	Физические основы	13		
Рродония	полупроводников.	1	2	ОК 01-04
Введение	Связь с другими	1	2	OK 01-04
	дисциплинами. Роль			
	измерений в развитии			
	техники.			THE 1 1 1 2 2 2
Тема 1.1	Содержание учебного	4	2	ПК 1.1., 1.2, 2.3,
Электропроводность	материала			2.7,
беспримесных и	Электрические диаграммы			OK 01-04, OK 09, OK 10
примесных	металлов, полупроводников			OK 10
полупроводников.	и диэлектриков.			
	Концентрация носителей			
	зарядов в собственном			
	полупроводнике и влияние			
	температуры. Примесные			
	полупроводники.			
	Дрейфовый и			
	диффузионный токи			
	в полупроводниках.			
	Понятие о диффузионной			
	длине носителей.			
Тема 1.2. Электронно-	Содержание учебного	4	2	
дырочный переход.	материала	7	2	
Их виды, свойства	Образование контактной			
	_			
при разных	разности потенциалов на			
напряжениях. Ёмкость p-n перехода.	границе р и п областей.			
Емкость р-п перехода.	Свойства электронно-			
	дырочного перехода при			
	прямом напряжении, при			
	обратном напряжении.			
	Вольт-амперная			
	характеристика р-п			
	перехода. Виды:			
	симметричный,			
	несимметричный, структура			
	р-i, n-i; гетеропереход.			
	Ёмкость р-п перехода:			
	барьерная и диффузионная.			

Тема 1.3.	Содержание учебного	4	2	
Виды пробоев.	материала			
Контакт металл-	Причины возникновения			
полупроводник.	теплового пробоя. Виды			
	электрического пробоя:			
	лавинный и туннельный, где			
	их используют. Структура			
	контакта металл-			
	полупроводник п – типа.			
	Возникновение омического			
	и выпрямительного контакта			
	и их применения в			
	полупроводниковых			
	приборах. Контактные			
	явления в структуре:			
	металл-диэлектрик-			
	полупроводник.			
	Раздел 2.	47		
	Полупроводниковые			
	приборы.			
Тема 2.1	Содержание учебного	2	2	ПК 1.1., 1.2,
Полупроводниковые	материала	_	_	2.3,2.7,
диоды. Варикапы.	Устройство плоскостных и			OK 01-04, OK 09,
Anodon zupinimizn	точечных диодов и их			OK 10
	технология.			
	Однополупериодная и			
	мостовая схемы диодов.			
	Вольт- амперная			
	характеристика диодов,			
	влияние температуры на			
	характеристики для			
	германиевых и кремниевых			
	диодов. Параметры R пр., R			
	обр., К. Предельно			
	допустимые режимы			
	работы. Маркировка			
	полупроводниковых диодов.			
Тема 2.2	Содержание учебного	2	2	-
Кремниевые	материала	4	_	
стабилитроны.	Свойства стабилитрона при			
- Including Police	подаче прямого и обратного			
	напряжения.			
	Стабистор. Параметры			
	стабилитрона: Uст., I min., I			
	max., P max., r диф., R			
	статич. Применение.			
	Маркировка.			
	ттирктровки.			
	Практическое занятие 1.	4	2	
	Исследование кремниевого	•		
	стабилитрона. Снятие			
	Taominipona. Chaine			

	характеристик и		
Тема 2.3	определение параметров.	4	2
	Содержание учебного	4	2
Биполярные	материала		
транзисторы.	Работа транзистора в		
	статическом и		
	динамическом режиме.		
	Режим насыщения и		
	отсечки, где применяют эти		
	режимы. Статические		
	характеристики транзистора		
	по схеме ОЭ: входные и		
	выходные, первичные и		
	вторичные параметры. Роль		
	напряжения смещения на		
	входе усилительного		
	каскада. Основные		
	параметры усилительного		
	каскада:		
	коэффициент усиления,		
	амплитудно – частотная		
	характеристика, уровень		
	помех, чувствительность.		
	Практическое занятие 2.	5	2
	Исследование биполярного		
	транзистора по схеме ОЭ в		
	статическом режиме.		
	Практическое занятие 3.	5	2
	Исследование		
	усилительного каскада на		
	биполярном транзисторе по		
	схеме ОЭ.		
	Практическое занятие 4.	5	2
	Расчет параметров		
	биполярного транзистора и		
	стабилитрона. Работа со		
	справочником, нахождение		
	характеристик и		
	определение параметров		
	данных приборов по		
T 2.4	характеристикам.	4	
Тема 2.4	Содержание учебного	4	2
Полевой транзистор.	материала		
	Полевой транзистор с		
	управляющим р-п		
	переходом с каналом n –		
	типа. Назначение		
	электродов, схема		
	включения с общим		
	истоком. Стоковые и стоко –		
	затворные характеристики.		

				1
	Параметры $-S$ – крутизна,			
	Ri – дифференциальное			
	сопротивление, μ -			
	коэффициент усиления.			
	МДП (МОП) транзисторы со			
	встроенным каналом и			
	индуцированным. Стоковые			
	характеристики.			
	Обозначения на схемах.			
	Применение.			
	•	6	2	-
	Практическое занятие 5.	U	2	-
	Исследование полевого			
	транзистора с управляющим			
7.7.7	р-н переходом.	4		-
Тема 2.5. Тиристоры.	Содержание учебного	4	2	
	материала			-
	Четырёхслойная структура -			
	p-n- p-n, типы тиристоров.			
	Схемы включения			
	динистора и тринистора.			
	Физические процессы			
	происходящие при подаче U			
	прямого и Иобратного. Роль			
	управляющего электрода.			
	Виды вольт – амперных			
	характеристик при разных			
	значениях тока управления.			
	Применение. Иметь			
	представление о			
	симметричных тиристорах.			
	Практическое занятие 6.	6	2	-
	Исследование тиристоров.	O	2	
	Снятие вольт- амперных			
	характеристик при			
	различных токах			
	управления.	1.0		
	Раздел 3.	16		
	Электронные			
T 2.1	лампы.	4	2	ПК 1 1 1 2 2 2
Тема 3.1	Содержание учебного	4	2	ПК 1.1., 1.2, 2.3, 2.7,
Виды электронной	материала			OK 01-04, OK 09,
эмиссии.	Виды электронной эмиссии:			OK 01-04, OK 0),
Электровакуумный	термоэлектронная,			OK 10
диод и триод.	фотоэлектронная,			
	электростатическая,			
	вторичная электронная,			
	эмиссия под ударами			
	тяжелых частиц.			
	Термокатод, анод и			
	управляющая сетка –			
	конструкция и назначение.			
	1 1 2		1	L

	II		<u> </u>	1
	Назначение диода, триода,			
	схемы. Статические			
	характеристики триода.			
T. 2.2	Параметры.	2	2	
Тема 3.2	Содержание учебного	2	2	
Многоэлектродные	материала			
лампы.	Конструкция тетрода,			
	пентода, лучевого тетрода.			
	Динатронный эффект и			
	устранение его в			
	многоэлектродных лампах.			
	Характеристики ламп,			
	параметры ламп.			
	Практическое занятие 7.	5	2	
	Исследование пентода.	_		
	Практическое занятие 8.	5	2	
	Исследование лучевого			
	пентода.			
	Раздел 4.	9		
	Полупроводниковые			
	фотоэлектронные			
	приборы.			
Тема 4.1	Содержание учебного	2	2	ПК 1.1., 1.2, 2.3,
Фоторезисторы и	материала			2.7,
фотогальванические	Внутренний и внешний			OK 01-04, OK 09, OK 10
элементы.	фотоэффект.			OK 10
	физические процессы,			
	проходящие в			
	фоторезисторе и в			
	фотогальваническом			
	элементе. Характеристики и			
	параметры фоторезистора.			
Тема 4.2.	Содержание учебного	2	2	
Фотодиоды.	материала			
Фототранзисторы.	Конструкция фотодиодов.			
	Фотодиодный и			
	фотогальванический			
	режимы работы фотодиода.			
	Характеристики:			
	вольтамперная, световая,			
	спектральная. Параметры			
	фотодиода в двух режимах			
	работы. Конструкция и			
	принцип действия			
	фототранзисторов.			
	Применение приборов.			
	П		2	-
	Практическое занятие 9.	5	2	4
	Исследование фотодиода в			
	двух режимах работы.	22		
	Раздел 5.	22		

	Устройства отображения			
m - 4	информации.			TT 1 1 1 2 2 2
Тема 5.1.	Содержание учебного	4	2	ПК 1.1., 1.2, 2.3,
Буквенно-цифровые	материала			2.7, OK 01-04, OK 09,
индикаторы.	Виды разрядов в газе:			OK 01-04, OK 09, OK 10
	тлеющий и дуговой.			OK 10
	Применение разрядов в			
	приборах. Конструкция			
	неоновой лампы, знаковых			
	газоразрядных индикаторов,			
	их принцип действия.			
Тема 5.2.	Содержание учебного	4	2	
Светодиоды.	материала			
Оптоэлектронные	Плоская и полусферическая			
приборы.	конструкция светодиода.			
	Процессы при подаче			
	прямого напряжения.			
	Зависимость длины волны			
	от материала. Цвет			
	излучения. Характеристики			
	и основные параметры			
	светодиодов. Применение			
	светодиодов в			
	оптоэлектронике.			
	Практическое занятие 10.	6	2	
	Исследование	Ü	_	
	индикаторных приборов:			
	цифровых газоразрядных			
	индикаторов и светодиодов.			
Тема 5.3.	Содержание учебного	4	2	
Устройства	материала		_	
отображения	Устройство			
информации на	осциллографической			
электронно-лучевых	электронно-лучевой трубки:			
трубках.	электронно-лучевой груски.			
грускал.	экран трубки, отклоняющая			
	система. Назначение всех			
	электродов. Получение			
	изображения на экране. ЭЛТ			
	-			
	с магнитным управлением:			
	роль фокусирующей			
	катушки и магнитной			
	отклоняющей системы.			
T <i>F A</i>	Маркировка трубок.	4		_
Тема 5.4.	Содержание учебного	4	2	
Кинескопы.	материала			
	Получение телевизионного			
	изображения, получение			
	растра. Роль модулятора.			
	Конструктивные			
	особенности кинескопов с			

	использованием сложных			
	электронных прожекторов.			
	Ионные ловушки.			
	Металлизированные экраны.			
	Раздел 6.	12		
	Основы			
	микроэлектроники.			
Тема 6.1.	Содержание учебного	4	2	ПК 1.1., 1.2, 2.3,
Интегральные схемы	материала			2.7,
- качественно-новая	Дать понятие интегральной			OK 01-04, OK 09,
электронная база	микросхемы. Преимущества			OK 10
1	микроэлектроники.			
	Элементы и компоненты			
	ИС. Активные и пассивные			
	элементы. Степень			
	интеграции микросхемы.			
	Классификация: 1) по			
	технологии изготовления:			
	полупроводниковая			
	(ПИМС), гибридная			
	(ГИМС), пленочная и			
	совмещенная интегральная			
	схема; 2) по характеру			
	функционального			
	назначения - аналоговые,			
	цифровые и			
	комбинированные. Система			
	обозначений интегральных			
	микросхем.			

Тема 6.2. Гибридные	Содержание учебного материала	4	2	
интегральные микросхемы	Основные конструктивные элементы:	7		
(ГИМС).	подложка, пленочные пассивные элементы,			
(1 mvic).				
	навесные элементы, корпуса для гибридных			
	микросхем. Изготовление фотошаблонов и			
	масок для получения пленочных пассивных			
	элементов. Получение пленочных: резисторов,			
	конденсаторов, индуктивных элементов.			
	Навесные компоненты ГИМС.			
Тема 6.3.	Содоруми учебного модорую на			
	Содержание учебного материала			
Полупроводниковые				
интегральные микросхемы (ПИМС).				
	Технологии изготовления: планарно-	2	2	
	диффузионная и планарно-эпитаксиальная			
	технологии. Сборка и герметизация ПИМС,			
	полупроводниковые БИС, этапы разработки и			
	проектирование БИС.			
Тема 6.4. Аналоговые и	Содержание учебного материала			
цифровые микросхемы.				
	Назначение аналоговых микросхем в качестве			
	усилителей, генераторов гармонических			
	колебаний.			
	Особенности дифференциальных усилителей.			
	Положительная и отрицательная логика.			
	Основные параметры логических микросхем.			
	Простейшие логические операции И, ИЛИ,			
	НЕ. Применение цифровых (логических)			
	микросхем.			
Тема 6.4. Аналоговые и цифровые микросхемы.	Содержание учебного материала	2	2	
1	Назначение аналоговых микросхем в качестве			
	усилителей, генераторов гармонических			
	колебаний.			
	Особенности дифференциальных усилителей.			
	Положительная и отрицательная логика.			
	Основные параметры логических микросхем.			
	Простейшие логические операции И, ИЛИ,			
	НЕ. Применение цифровых (логических)			
	микросхем.			
	Раздел 7.	6		
	Импульсные устройства.			
Тема 7.1	Содержание учебного материала	2	2	ПК
Виды импульсных	•			1.1.,
сигналов.				1.2,
				2.3,
	Понятие «импульс». Виды видеоимпульсов:			2.7,
	прямоугольный, пилообразный,			OK 01-
	I mpoji ovibiibili, liivioo opublibili,		1	l

	экспоненциальный, треугольный,			04, ОК
	трапецеидальный, колоколообразный.			09,
Тема 7.2	Содержание учебного материала	2	2	OK10
Параметры импульсных	Диодные ключи - последовательная и			
сигналов. Простейшие	параллельная схемы ключей. Передаточная			
формирователи	характеристика. Преимущества транзисторных			
импульсных сигналов.	ключей перед диодными.			
	Режим отсечки и режим насыщения в			
	транзисторном ключе. Применение в			
	цифровых микросхемах.			
	Итоговая контрольная работа	2		
Итого:		125		

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебной лаборатории «электронной техники».

Оборудование лаборатории:

- 1. Рабочие места преподавателя и обучающихся.
- 2. Плакаты (стенды) для оформления кабинета.
- 3. Учебные наглядные пособия и презентации по дисциплине (диски, плакаты, слайды).
- 4. Таблицы.
- 5. Приборы.
- 6. Оборудование для практических работ.

Технические средства обучения:

- 1. Демонстрационный (мультимедийный) комплекс.
- 2. Телевизор с видеомагнитофоном и DVD плеером.

1.2. Информационное обеспечение обучения.

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы:

Основные источники:

- 1. 1. Горошков Б.И. Электронная техника [Текст]: Учебное пособие / Б.И. Горошков, А.Б. Горошков. М.: Академия, 2012. 320 с.
- 2. 2. Одиноков А.С. ОП 04 Электронная техника [Текст]: Методические указания и задания на контрольные работы / А.С. Одиноков. М.: ФГБОУ «Учебнометодический центр по образованию на железнодорожном транспорте», 2015.-74 с.
- 3. 3. Одиноков А.С. ОП 04 Электронная техника [Текст]: Методическое пособие по проведению лабораторных занятий / А.С. Одиноков. М.: ФГБОУ «Учебнометодический центр по образованию на железнодорожном транспорте», 2016. 111 с.
- **4.** 1 Акимова Г.Н. Электронная техника [Текст]: Учебник / Г.Н. Акимова. М.: ФГБУ ДПО «Учебно-методический центр по образованию на железнодорожном транспорте», 2017.-332 с. Режим доступа: http://umczdt.ru/books/44/18678/ Загл. с экрана.

- **5.** 2. Фролов В.А. Электронная техника. Ч.1. Электронные приборы и устройства: Учебник / В.А. Фролов. М.: ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2015. 532 с. http://umczdt.ru/books/44/62163/ Загл. с экрана.
- **6.** 3. Фролов В.А. Электронная техника. Ч.2. Схемотехника электронных схем: Учебник / В.А. Фролов. М.: ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2015. 612 с. http://umczdt.ru/books/44/18676/ Загл. с экрана.

Дополнительные источники:

- 1. Манаев Е.И « Основы радиоэлектроники. Москва «Радио и Связь» 2003 г,506с.
- 2. Технические паспорта приборов
- 3. Инструкции по использованию приборов

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения (усвоенные знания, освоенные умения)	Формы и методы контроля и оценки результатов обучения
В результате освоения учебной дисциплины студент должен уметь: - пользоваться измерительными приборами при проведении лабораторных и профилактических измерений; -выбирать метод измерения и определять погрешность измерения;	Оценка устного ответа Оценка тестирования знаний Оценка результатов контрольных работ Оценка результата практических и лабораторных работ
В результате освоения дисциплины студент должен иметь представление: -о взаимосвязи «Электронной техники» с другими общеобразовательными и специальными дисциплинами; -о новейших достижениях и перспективах развития в области электронной техники; -о парке электронных приборов и возможности их использования.	
В результате освоения дисциплины	Оценка результата практических и лабораторных работ

студент должен знать:

-назначение и возможности использования различных электронных приборов;

-методы измерения различных параметров;

-степень влияния электронных приборов на параметры измеряемой цепи.

Оценка устного ответа

Оценка тестирования знаний

Оценка результатов контрольных работ

Оценка дифференцированного зачета

Код и наименование профессиональных и	Критерии оценки	Методы оценки
общих компетенций,		
формируемых в рамках		
модуля		
1	2	3
ПК 1.1. Анализировать	- объясняет, комментирует, классифицирует	Оценка устного ответа
работу станционных, пе-	работу станционных, перегонных,	Оценка тестирования
регонных, микропроцес-	микропроцессорных и диагностических	знаний
сорных и диагностиче-	систем автоматики по принципиальным	Оценка результатов
ских систем автоматики	схемам.	контрольных работ
по принципиальным схе-		Оценка результата
мам.		практических и
ПК 1.2. Определять и	- осуществляет логический анализ работы	лабораторных работ
устранять отказы в работе	станционных, перегонных,	Оценка
станционных,	микропроцессорных и диагностических	дифференцированного
перегонных,	систем автоматики по принципиальным	зачета
микропроцессорных и	схемам;	
диагностических систем	- демонстрирует умения контроля работы	
автоматики	станционных устройств и систем	
	автоматики, перегонных систем	
	автоматики, микропроцессорных и	
	диагностических систем автоматики и	
	телемеханики;	
	– анализирует процесс функционирования	
	микропроцессорных и диагностических	
	систем автоматики и телемеханики в	
	процессе обработки поступающей	
	информации на основе знания	
	соответствующих алгоритмов	
	функционирования.	
ПК 2.3. Выполнять	- демонстрирует практические навыки и	
работы по техническому	знание технологии обслуживания и ремонта	
обслуживанию линий	устройств СЦБ и систем железнодорожной	
железнодорожной	автоматики, аппаратуры электропитания и	
автоматики	линейных устройств СЦБ.	
ПК 2. 7. Составлять и	- демонстрирует знание технологии и	
анализировать монтажные	практические навыки составления и	
схемы устройств	анализа монтажных схем устройств СЦБ и	
сигнализации,	ЖАТ по принципиальным схемам.	
централизации и		

<u> </u>		T
блокировки,		
железнодорожной		
автоматики и		
телемеханики по		
принципиальным схемам.		
OK 01	- распознает задачу и/или проблему в	- наблюдение за
Выбирать способы	профессиональном и/или социальном	выполнением
решения задач	контексте;	лабораторных работ и
профессиональной	- анализирует задачу и/или проблему и	практических занятий;
деятельности,	выделяет её составные части; определяет	-разбор конкретных
применительно к	этапы решения задачи; выявляет и	ситуаций
различным контекстам	эффективно ищет информацию,	
1	необходимую для решения задачи и/или	
	проблемы;	
	- составляет план действия; определяет	
	необходимые ресурсы; владеет	
	актуальными методами работы в	
	1 -	
	профессиональной и смежных сферах;	
	реализует составленный план; оценивает	
	результат и последствия своих действий	
	(самостоятельно или с помощью	
0.14.02	наставника)	
OK 02	- определяет задачи для поиска	- наблюдение за
Осуществлять поиск,	информации; определяет необходимые	выполнением
анализ и интерпретацию	источники информации;	лабораторных работ и
информации,	- планирует процесс поиска;	практических занятий;
необходимой для	- структурирует получаемую информацию;	-разбор конкретных
выполнения задач	- выделяет наиболее значимое в перечне	ситуаций
профессиональной	информации;	
деятельности	- оценивает практическую значимость	
	результатов поиска;	
	- оформляет результаты поиска	
ОК 03 Планировать и	Планировать и реализовывать собственное	- наблюдение за
реализовывать	профессиональное и личностное развитие;	выполнением
собственное		лабораторных работ и
профессиональное и		практических занятий;
личностное развитие;		-разбор конкретных
in moethoe passitine,		ситуаций
OK 04	демонстрирует знание психологических	наблюдение за
Работать в коллективе и	основ деятельности коллектива и	выполнением
команде, эффективно	особенностей личности,	лабораторных работ и
взаимодействовать с	·	
	демонстрирует умение организовывать	практических занятий;
коллегами, руководством,	работу коллектива, взаимодействовать с	-разбор конкретных
клиентами	коллегами, руководством, клиентами в ходе	ситуаций
OK 00 Here are	профессиональной деятельности	
ОК 08 Использовать	- применяет средства информационных	- наблюдение за
информационные	технологий для решения	выполнением
технологии в	профессиональных задач;	лабораторных работ и
профессиональной	- использует современное программное	практических занятий;
деятельности	обеспечение.	-разбор конкретных
		ситуаций
ОК 09Пользоваться	- понимает общий смысл четко	- наблюдение за
профессиональной	произнесенных высказываний на известные	выполнением
документацией на	темы (профессиональные и бытовые),	лабораторных работ и
государственном и	понимать тексты на базовые	практических занятий;
иностранном языках	профессиональные темы;	-разбор конкретных
	· · · · /	

- участвует в диалогах на знакомые общие и профессиональные темы; строить простые высказывания о себе и о своей профессиональной деятельности;	ситуаций
высказывания о себе и о своей	
знакомые или интересующие профессиональные темы.	

Оценка индивидуальных образовательных достижений по результатам текущего и промежуточного контроля производится в соответствии с универсальной шкалой (таблица).

Процент результативности	Качественная оценка индивидуальных образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	не удовлетворительно	