ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ИВАНОВСКОЙ ОБЛАСТИ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИВАНОВСКИЙ ЖЕЛЕЗНОДОРОЖНЫЙ КОЛЛЕДЖ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУДБ.05. ХИМИЯ

для профессий среднего профессионального образования по программам подготовки квалифицированных рабочих, служащих технического профиля

23.01.09. Машинист локомотива

Срок обучения: 3 года 10 месяцев

Разработчик:

ОГБПОУ Ивановский железнодорожный колледж Преподаватель: Е.А.Комарова Введен в действие с « 01» сентября 2015 года

PACCMOTPEHA

на заседании МК преподавателей общеобразовательных дисциплин Протокол № 1 от «31»августа 2015 г.

Председатель	/ Е.В.Мочалова/
--------------	-----------------

Разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия», в соответствии Рекомендациями c организации получения среднего общего образования пределах освоения В образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований ФГОС и получаемой профессии профессионального среднего образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06 -259).

УТВЕРЖДАЮ

Заместитель директора по УМР	/Т.В. Мочалова/
«31» августа 2015г.	

СОДЕРЖАНИЕ

	стр
1.ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
1.1.Пояснительная записка.	6
1.2. Общая характеристика учебной дисциплины «Химия».	8
2.2.Место учебной дисциплины в учебном плане.	Ü
2.СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	
2.1.Содержание учебной дисциплины с учетом профиля	7
профессионального образования.	1.5
2.2.Тематический план учебных занятий по учебной дисциплине.	15
2.3. Характеристика основных видов деятельности обучающихся на	17
уровне учебных действий	
3.УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	
3.1.Учебно-методическое и материально-техническое обеспечение	19
программы учебной дисциплины.	
3.2.Рекомендуемая литература: для обучающихся, преподавателей,	20
интернет-ресурсы.	20
4.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ	
дисциплины	21
4.1. Результаты освоения учебной дисциплины – личностные, метапредметные, предметные.	

1.ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«КИМИХ»

1.1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

Рабочая программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия» и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от17.03.2015 № 06-259).

Рабочая программа разработана на основе примерной программы общеобразовательной учебной дисциплины «Химия» для профессиональных образовательных организаций, одобренной Научно-методическим советом Центра профессионального образования $\Phi \Gamma A Y$ « $\Phi U P O$ ».

Рабочая программа общеобразовательной учебной дисциплины «Химия» предназначена для изучения химии в ОГБПОУ Ивановском железнодорожном колледже, реализующему образовательную программу среднего общего образования в пределах освоения программы подготовки квалифицированных рабочих, служащих СПО на базе основного общего образования.

Содержание программы «Химия» направлено на достижение следующих **целей:**

- формирование у обучающихся умения оценивать значимость химического знания для каждого человека;
- формирование у обучающихся целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого химические знания;
- развитие у обучающихся умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей, формулировать и обосновывать собственную позицию;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания самопознания: ключевых навыков. имеюших универсальное значение ДЛЯ различных деятельности (навыков решения видов информации, проблем, принятия решений, обработки поиска, анализа коммуникативных навыков измерений, навыков сотрудничества, навыков навыков, безопасного обращения веществами в повседневной жизни).

1.2. Общая характеристика учебной дисциплины «Химия».

Химия — это наука о веществах, их составе и строении, о их свойствах и превращениях, о значении химических веществ, материалов и процессов в практической деятельности человека.

Содержание общеобразовательной учебной дисциплины «Химия» направлено на усвоение обучающимися основных понятий, законов и теорий химии; на овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчёты на основе химических формул веществ и уравнений химических реакций.

процессе изучения химии у обучающихся развиваются познавательные и интеллектуальные способности, потребности в самостоятельном приобретения знаний соответствии с возникающими жизненными проблемами, воспитывается бережное отношения к природе, понимание здорового образа жизни, необходимости предупреждения явлений, наносящих вред здоровью и окружающей среде. Они осваивают безопасного использования химических веществ грамотного, материалов, применяемых в быту, в сельском хозяйстве и на производстве.

При структурировании содержания общеобразовательной учебной дисциплины профессиональных образовательных организаций, реализующих образовательную программу среднего общего образования в пределах освоения ППКРС СПО на базе основного общего образования, учитывалась объективная реальность – небольшой объем часов, отпущенных на изучение химии, стремление максимально соответствовать идеям И развивающего обучения. Поэтому теоретические вопросы максимально смещены изучения дисциплины, тем, чтобы последующий фактический материал рассматривался на основе изученных теорий.

Реализация дедуктивного подхода к изучению химии способствует развитию таких логических операций мышления, как анализ и синтез, обобщение и конкретизация, сравнение и аналогия, систематизация и классификация и др.

в ОГБПОУ Ивановском железнодорожном Изучение химии колледже, реализующему образовательную программу среднего общего образования в пределах освоения ППКРС СПО на базе основного общего образования, имеет свои особенности в зависимости от профиля профессионального образования. Это выражается через содержание обучения, количество часов, выделяемых на изучение отдельных тем программы, глубину их освоения обучающимися, объем практических через И характер занятий, виды внеаудиторной самостоятельной работы студентов.

процессе изучения химии теоретические сведения дополняются демонстрациями, занятиями. Значительное практическими лабораторными опытами И место отводится химическому эксперименту. Он открывает возможность формировать обучающихся предметные умения: работать с веществами, выполнять простые химические опыты, учит безопасному экологически грамотному обращению веществами, материалами и процессами в быту и на производстве.

Для организации внеаудиторной самостоятельной работы студентов, овладевающих профессиями СПО представлен примерный перечень рефератов (докладов), индивидуальных проектов.

В процессе изучения химии важно формировать информационную компетентность обучающихся. Поэтому при организации самостоятельной работы акцентируется внимание обучающихся на поиске информации в средствах масс-медиа, Интернете, в учебной и специальной литературе с соответствующим оформлением и представлением результатов.

Изучение общеобразовательной учебной дисциплины «Химия» завершается подведением итогов в форме дифференцированного зачета в рамках промежуточной аттестации студентов в процессе освоения ППКРС СПО с получением среднего общего образования .

2.2.Место учебной дисциплины в учебном плане.

Учебная дисциплина «Химия» является учебным предметом по выбору из обязательной предметной области «Естественные науки» ФГОС среднего общего образования.

В ОГБПОУ Ивановском железнодорожном колледже, реализующему образовательную программу среднего общего образования в пределах освоения ППКРС СПО на базе основного общего образования, учебная дисциплина «Химия» изучается в общеобразовательном цикле учебного ППКРС СПО на базе основного общего образования с получением среднего общего образования.

В учебных планах ППКРС место учебной дисциплины «Химия» — в составе общеобразовательных учебных дисциплин по выбору, формируемых из обязательных предметных областей ФГОС среднего общего образования, для профессий СПО технического профиля профессионального образования

Учебную дисциплину «Химия» обучающиеся изучают в объеме 114 часов.

	Максима-	Самосто-	Коли-	Практи-	Лаборато-	Контро-	Индиви-
	льная	ятельная	чество	ческие	рные	льные	дуальный
	нагрузка	работа	часов	работы	работы	работы	проект
химия	171	57	114	5	-	8	1

2.СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ.

2.2. Содержание учебной дисциплины с учетом профиля профессионального образования Технический профиль профессионального образования

Введение

Научные методы познания _{веществ} и химических явлений. Роль эксперимента и теории в химии. Моделирование химических процессов. Значение химии при освоении профессий СПО технического профиля профессионального образования.

1. Общая и неорганическая химия

1.1. Основные понятия и законы химии

Основные понятия химии. Вещество. Атом. Молекула. Химический элемент. Аллотропия. Простые и сложные вещества. Качественный и количественный состав веществ. Химические знаки и формулы.

Относительные атомная и молекулярная массы. Количество вещества.

Основные законы химии. Стехиометрия. Закон сохранения массы веществ. Закон постоянства состава веществ молекулярной структуры. Закон Авогадро и следствия их него.

Расчетные задачи на нахождение относительной молекулярной массы, определение массовой доли химических элементов в сложном веществе.

Демонстрации. Модели атомов химических элементов. Модели молекул простых и сложных веществ (шаро-стержневые и Стюарта-Бриглеба). Коллекция простых и сложных веществ. Некоторые вещества количеством 1 моль. Модель молярного объема газов. Аллотропия фосфора, кислорода, олова.

Профильные и профессионально-значимые элементы содержания. Аллотропные модификации углерода (алмаз, графит), кислорода (кислород, озон), олова (серое и белое олово). Понятие о химической технологии, биотехнологии и нанотехнологии.

1.2. Периодический закон и периодическая система химических элементов Д.И. Менделеева и строение атома

Периодический закон Д.И. Менделеева. Открытие Д.И. Менделеевым периодического закона. Периодический закон в формулировке Д.И. Менделеева.

Периодическая таблица химических элементов – графическое отображение периодического закона. Структура периодической таблицы: периоды (малые и большие), группы (главная и побочная).

Строение атома и периодический закон Д.И. Менделеева. Атом — сложная частица. Ядро (протоны и нейтроны) и электронная оболочка. Изотопы. Строение электронных оболочек атомов элементов малых периодов. Особенности строения электронных оболочек атомов элементов больших периодов (переходных элементов). Понятие об орбиталях. s-, p- и d-Орбитали. Электронные конфигурации атомов химических элементов.

Современная формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.

 Демонстрации.
 Различные формы периодической системы Д.И.

 химических элементов моделирования периодической системы.
 Динамические таблицы для периодической системы.

 электризация тел и их взаимодействие.

Лабораторные опыты. Моделирование построения периодической таблицы химических элементов.

Профильные и профессионально-значимые элементы содержания. Использование радиоактивных изотопов в технических целях.

1.3. Строение вещества

Ионная химическая связь. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь как связь между катионами и анионами за счет электростатического притяжения.

Классификация ионов: по составу, по знаку заряда, по наличию гидратной оболочки. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

Ковалентная химическая связь. Механизм образования ковалентной связи (обменный донорно-акцепторный). Электроотрицательность. И полярная неполярная связи. Кратность ковалентной Ковалентные И Молекулярные атомные кристаллические решетки. И Свойства вешеств молекулярными и атомными кристаллическими решетками.

Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь. Физические свойства металлов.

Агрегатные состояния веществ и водородная связь. Твердое, жидкое и газообразное состояния веществ. Переход вещества из одного агрегатного состояния в другое. Водородная связь.

Чистые вещества и смеси. Понятие о смеси веществ. Гомогенные и гетерогенные смеси. Состав смесей: объемная и массовая доли компонентов смеси, массовая доля примесей.

Дисперсные системы. Понятие о дисперсной системе. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Понятие о коллоидных системах.

Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы кристаллической решеткой: минералов ионной кальшита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Образцы Приборы на жидких кристаллах. различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. Приготовление суспензии карбоната кальция в воде.

Получение эмульсии моторного масла. Ознакомление со свойствами дисперсных систем.

Профильные и профессионально-значимые элементы содержания. Полярность связи и полярность молекулы. Конденсация. Текучесть. Возгонка. Кристаллизация. Сублимация и десублимация. Аномалии физических свойств воды. Минералы и горные породы как природные смеси. Эмульсии и суспензии. Золи (в том числе аэрозоли) и гели. Коагуляция. Синерезис.

1.4. Вода. Растворы. Электролитическая диссоциация

Вода. Растворы. Растворение. Вода как растворитель. Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы. Зависимость растворимости газов, жидкостей и твердых веществ от различных факторов.

Массовая доля растворенного вещества.

Электролитическая диссоциация. Электролиты неэлектроиты. Электролитическая Механизмы электролитической диссоциация. диссоциации химической ДЛЯ веществ c различными типами связи. Гидратированные И негидратированные ионы. Степень электролитической лиссоциации. Сильные И слабые электролиты. Основные положения теории электролитической диссоциации. Кислоты, основания И соликак электролиты.

Демонстрации. Растворимость веществ в воде. Собирание газов методом вытеснения воды. Растворение в воде серной кислоты и солей аммония. Образцы кристаллогидратов. Изготовление гипсовой повязки. Испытание растворов электролитов и неэлектролитов на предмет диссоциации уксусной диссоциации. Зависимость степени электролитической кислоты от разбавления раствора. Движение окрашенных ионов в электрическом поле. ее жесткости. Иониты. Образцы Приготовление жесткой воды и устранение минеральных вод различного назначения.

Практическое занятие. Приготовление раствора заданной концентрации.

Профильные профессионально-значимые содержания. элементы Растворение как физико-химический процесс. Тепловые эффекты при растворении. Решение задач массовую долю на растворенного вещества. Жесткость воды и способы ее устранения. Минеральные воды.

1.5. Классификация неорганических соединений и их свойства *Кислоты и их свойства*. Кислоты как электролиты, их классификация

по различным признакам. Химические свойства кислот в свете теории электролитической диссоциации. Особенности взаимодействия концентрированной серной и азотной кислот с металлами. Основные способы получения кислоты.

Основания и их свойства. Основания как электролиты, их классификация по различным признакам. Химические свойства оснований в свете теории электролитической диссоциации. Разложение нерастворимых в воде оснований. Основные способы получения оснований.

Соли и их свойства. Соли как электролиты. Соли средние, кислые и основные. Химически свойства солей в свете теории электролитической диссоциации. Способы получения солей.

Гидролиз солей.

Оксиды и их свойства. Солеобразующие и несолеобразующие оксиды. Основные, амфотерные и кислотные оксиды. Зависимость характера оксида от степени окисления образующего его металла. Химические свойства оксидов. Получение

оксидов.

Демонстрации. Взаимодействие азотной и концентрированной серной кислот с металлами. Горение фосфора и растворение продукта горения в воде. Получение и свойства амфотерного гидроксида. Необратимый гидролиз карбида кальция. Обратимый гидролиз солей различного типа.

Лабораторные опыты. Испытание растворов кислот индикаторами. Взаимодействие металлов с кислотами. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями. Взаимодействие кислот с солями.

Испытание растворов щелочей индикаторами. Взаимодействие щелочей с солями. Разложение нерастворимых оснований.

Взаимодействие солей с металлами. Взаимодействие солей друг с другом. Гидролиз солей различного типа.

Профильные и профессионально-значимые элементы содержания.

Правила разбавления серной кислоты.

Понятие о рН раствора. Кислотная, щелочная, нейтральная среды растворов.

1.6. Химические реакции

Классификация химических реакций. Реакции соединения, Каталитические разложения, замещения, обмена. реакции. Обратимые И необратимые реакции. Гомогенные гетерогенные И реакции. Экзотермические и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения.

Окислительно-восстановительные реакции. Степень окисления. Восстановитель и окисление. Окислитель и восстановление. Метод электронного баланса ДЛЯ составления уравнений окислительновосстановительных реакций.

Скорость химических реакций. Понятие о скорости химических реакций. Зависимость скорости химических реакций от различных факторов: природы реагирующих веществ, их концентрации, температуры, поверхности соприкосновения и использования катализаторов.

Обратимость химических реакций. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения.

Демонстрации. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Зависимость скорости реакции от природы реагирующих веществ. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Зависимость скорости химической реакции от присутствия катализатора на примере разложение пероксида водорода с помощью диоксида марганца и каталазы. Модель электролизера. Модель электролизной ванны для получения алюминия. Модель колонны синтеза аммиака.

Лабораторные опыты. Реакция замещения меди железом в растворе медного купороса. Реакции, идущие с образованием осадка, газа или воды. Зависимость скорости взаимодействия соляной кислоты с металлами от их природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации. Зависимость скорости взаимодействия оксида меди (II) с серной кислотой от температуры.

Профильные и профессионально-значимые элементы содержания. Понятие об электролизе. Электролиз расплавов. Электролиз растворов.Практическое применение электролиза.

Катализ. Гомогенные и гетерогенные катализаторы. Каталитические яды. Ингибиторы.

1.7.Металлы и неметаллы

Металлы. Особенности строения атомов и кристаллов. Физические свойства металлов. Классификация металлов по различным признакам. Химические свойства металлов. Электрохимический ряд напряжений металлов.

Металлотермия.

Общие способы получения металлов. Понятие о металлургии. Пирометаллургия, гидрометаллургия и электрометаллургия. Сплавы черные и цветные.

Неметаллы. Особенности строения атомов. Неметаллы — простые вещества. Зависимость свойств галогенов от их положения в периодической системе. Окислительные и восстановительные свойства неметаллов в зависимости от их положения в ряду электроотрицательности.

Демонстрации. Коллекция металлов. Взаимодействие металлов с неметаллами (железа, цинка и алюминия с серой, алюминия с иодом, сурьмы с хлором, горение железа в хлоре). Горение металлов. Алюминотермия.

Коллекция неметаллов. Горение неметаллов (серы, фосфора, угля). Вытеснение менее активных галогенов растворов солей более ИЗ ИΧ активными галогенами.

Лабораторные опыты. Закалка и отпуск стали. Ознакомление со структурами серого и белого чугуна. Распознавание руд железа.

Практические занятия:

Получение, собирание и распознавание газов.

Решение экспериментальных задач.

Профильные и профессионально-значимые элементы содержания. Коррозия металлов: химическая и электрохимическая. Зависимость скорости коррозии от условий окружающей среды. Классификация коррозии металлов по различным признакам. Способы защиты металлов от коррозии.

2. Органическая химия

2.1. Основные понятия органической химии и теория строения органических соединений

Предмет органической химии. Природные, искусственные и синтетические органические вещества. Сравнение органических веществ с неорганическими.

Валентность. Химическое строение как порядок соединения атомов в молекулы по валентности.

Теория строения органических соединений А.М. Бутлерова. Основные положения теории химического строения. Изомерия и изомеры. Химические формулы и модели молекул в органической химии.

Классификация органических веществ. Классификация веществ по строению углеродного скелета и наличию функциональных групп. Гомологи и гомология. Начала номенклатуры IUPAC.

Классификация реакций в органической химии. Реакции присоединения (гидрирования, галогенирования, гидратации). Реакции отщепления (дегидрирования, дегидратации). Реакции замещения. Реакции изомеризации.

Демонстрации. Модели молекул гомологов и изомеров органических соединений. Качественное обнаружение углерода, водорода и хлора в молекулах органических соединений.

Лабораторные опыты. Изготовление моделей молекул органических веществ.

Профильные и профессионально-значимые элементы содержания. Реакции окисления и восстановления органических веществ. Сравнение классификации соединений и классификации реакций в неорганической и органической химии.

2.2. Углеводороды и их природные источники

Алканы. Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование. Применение алканов на основе свойств.

Алкены. Этилен, его получение (дегидрированием этана, деполимеризацией

полиэтилена). Гомологический ряд, изомерия, номенклатура алкенов. Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Применение этилена на основе свойств.

Диены и каучуки. Понятие о диенах как углеводородах с двумя двойными связями. Сопряженные диены. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Натуральный и синтетические каучуки. Резина.

Алкины. Ацетилен. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединений хлороводорода и гидратация. Применение ацетилена на основе свойств. Межклассовая изомерия с алкадиенами.

Арены. Бензол. Химические свойства бензола: горение, реакции замещения (галогенирование, нитрование). Применение бензола на основе свойств.

Природные источники углеводородов. Природный газ: состав, применение в качестве топлива.

Нефть. Состав и переработка нефти. Перегонка нефти. Нефтепродукты. **Демонстрации**. Горение метана, этилена, ацетилена. Отношение

метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов. Коллекция «Каменный уголь и продукция коксохимического производства».

Лабораторные опыты. Ознакомление с коллекцией образцов нефти и продуктов ее переработки. Ознакомление с коллекцией каучуков и образцами изделий из резины.

Профильные и профессионально-значимые элементы содержания. Правило В.В. Марковникова. Классификация и назначение каучуков. Классификация и назначение резин. Вулканизация каучука.

Получение ацетилена пиролизом метана и карбидным способом. Реакция полимеризации винилхлорида. Тримеризация ацетилена в бензол.

Восстановление нитробензола в анилин. Гомологический ряд аренов. Толуол. Нитрование толуола. Тротил.

Основные направления промышленной переработки природного газа. Попутный нефтяной газ, его переработка.

Процессы промышленной переработки нефти: крекинг, риформинг. Октановое число бензинов и цетановое число дизельного топлива.

Коксохимическое производство и его продукция.

2.3. Кислородсодержащие органические соединения

Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах. Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид.

Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.

Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина.

Фенол. Физические и химические свойства фенола. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Применение фенола на основе свойств.

Альдегиды. Понятие об альдегидах. Альдегидная группа как функциональная. Формальдегид и его свойства: окисление в соответствующую кислоту, восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида на основе его свойств.

Карбоновые кислоты. Понятие о карбоновых кислотах.

Карбоксильная группа как функциональная. Гомологический ряд предельных одноосновных карбоновых кислот. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с минеральными кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.

Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств.

Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла.

Углеводы. Углеводы, их классификация: моносахариды (глюкоза, фруктоза), дисахариды (сахароза) и полисахариды (крахмал и целлюлоза).

Глюкоза — вещество с двойственной функцией — альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, спиртовое брожение. Применение глюкозы на основе свойств.

Значение углеводов в живой природе и в жизни человека. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза —— полисахарид.

Демонстрации. Окисление спирта в альдегид. Качественные реакции на многоатомные спирты. Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция серебряного зеркала альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоту с помощью гидроксида меди (II). Качественная реакция на крахмал. Коллекция эфирных масел.

 Лабораторные
 опыты.
 Растворение
 глицерина
 в воде и

 взаимодействие с гидроксидом меди (II).
 Свойства уксусной кислоты, общие со свойствами минеральных кислот.
 Доказательство непредельного характера жидкого жира.
 Взаимодействие глюкозы и сахарозы с гидроксидом меди (II).

 Качественная реакция на крахмал.
 "Качественная реакция на крахмал"
 "Качественная реакция на крахмал"

Профильные и профессионально-значимые элементы содержания. Метиловый спирт и его использование в качестве химического сырья. Токсичность метанола и правила техники безопасности при работе с ним. Этиленгликоль и его применение. Токсичность этиленгликоля и правила техники безопасности при работе с ним.

Получение фенола из продуктов коксохимического производства и из бензола. Ацетальдегид.

Многообразие карбоновых кислот (щавелевая кислота как двухосновная, акриловая кислота как непредельная, бензойная кислота как ароматическая).

Замена жиров в технике непищевым сырьем. Синтетические моющие средства.

Молочнокислое брожение глюкозы. Кисломолочные продукты. Силосование кормов. Нитрование целлюлозы.

2.4. Азотсодержащие органические соединения. Полимеры

Амины. Понятие об аминах. Алифатические амины, их классификация и номенклатура. Анилин, как органическое основание. Получение анилина из нитробензола. Применение анилина на основе свойств.

Аминокислоты. Аминокислоты как амфотерные дифункциональные органические свойства соединения. Химические аминокислот: взаимодействие co щелочами, кислотами друг другом (реакция И поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.

Белки. Первичная, вторичная, третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, цветные реакции. Биологические функции белков.

Полимеры. Белки и полисахариды как биополимеры.

Пластмассы. Получение полимеров реакцией полимеризации и поликонденсации. Термопластичные и термореактивные пластмассы. Представители пластмасс.

Волокна, их классификация. Получение волокон. Отдельные представители химических волокон.

Демонстрации. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательство наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков. Горение птичьего пера и шерстяной нити.

Пабораторные опыты. Растворение белков в воде. Обнаружение белков в молоке и в мясном бульоне. Денатурация раствора белка куриного яйца спиртом, растворами солей тяжелых металлов и при нагревании.

Практические занятия:

Решение экспериментальных задач на идентификацию органических соединений.

Распознавание пластмасс и волокон.

Профильные профессионально-значимые содержания. элементы Аминокапроновая кислота. Капрон представитель как полиамидных волокон. Использование гидролиза белков промышленности. Поливинилхлорид, В политетрафторэтилен (тефлон). Фенолоформальдегидные пластмассы.

2.2. Тематический план учебных занятий по учебной дисциплине. XИМИЯ.

Наименование разделов	Количество часов	Кол-во часов на самостоятель ную работу
	114	57
Введение	2	
1. Общая и неорганическая химия	70	35
1.1. Основные понятия и законы	6	3
1.2. Периодический закон и периодическая система химических элементов Д.И. Менделеева и строение атома	8	4
1.3. Строение вещества	10	5
1.4. Вода. Растворы. Электролитическая диссоциация	8	4
1.5. Классификация неорганических соединений и их свойства	12	6
1.6. Химические реакции	14	7
1.7. Металлы и неметаллы	12	6
2. Органическая химия	42	21
2.1. Основные понятия органической химии и теория строения органических соединений	8	4
2.2. Углеводороды и их природные источники	12	6
2.3. Кислородсодержащие органические соединения	10	5
2.4. Азотсодержащие органические соединения. Полимеры	12	6
Итого	114	57
Промежуточная аттестация в форме	дифференцирова	 нного зачета

2.3.Характеристика основных видов деятельности обучающихся на уровне учебных действий

Содержание	Характеристика основных видов деятельности
обучения	обучающегося (на уровне учебных действий)
Важнейшие химические понятия	Давать определение и оперировать следующими химически понятиями: вещество, химический элемент, атом, молеку относительные атомная и молекулярная массы, ион, аллотроп изотопы, химическая связь, электроотрицательнос валентность, степень окисления, моль, молярная мас молярный объем газообразных веществ, вещества молекулярного и немолекулярного строения, растворы, электролит неэлектролит, электролитическая диссоциация, окислите и восстановитель, окисление и восстановление, теплов эффект реакции, скорость химической реакции, катал химическое равновесие, углеродный скелет, функциональная групп изомерия, гомология.
Основные	Формулировать законы сохранения массы веществ и постоянст
законы химии	 □ Устанавливать причинно-следственную связь между содержанием этих законов и написанием химических формул и уравнений. □ Устанавливать эволюционную сущность менделеевской и современной формулировок периодического закона Д.И. Менделеева. □ Объяснять физический смысл символики периодической табли химических элементов Д.И. Менделеева (номеров элемента, периодруппы) и устанавливать причинно-следственную связь меж строением атома и закономерностями изменения свойств элементов образованных ими веществ в периодах и группах. □ Характеризовать элементы малых и больших периодов по их положению в периодической системе Д.И. Менделеева.
Основные	
теории химии	 □ Характеризовать важнейшие типы химических связей и относительность этой типологии. □ Объяснять зависимость свойств веществ от их состава и строения кристаллических решеток. □ Формулировать основные положения теории электролитической диссоциации и характеризовать в свете этой теории свойства основных классов неорганических соединений. □ Формулировать основные положения теории химического строения органических соединений и характеризовать в свете этой теории свойства основных классов органических соединений.

Важнейшие вещества и материалы Химический язык и символика	 □ Характеризовать состав, строение, свойства, получение и применение важнейших металлов (IA и II A групп, алюминия, железа, а в естественно-научном профиле и некоторых дэлементов) и их соединений. □ Характеризовать состав, строение, свойства, получение и применение важнейших неметаллов (VIII A, VIIA, VIA групп, а также азота и фосфора, углерода и кремния, водорода) и их соединений. □ Характеризовать состав, строение, свойства, получении и применение важнейших классов углеводородов (алканов, циклоалканов, алкенов, алкинов, аренов) и их наиболее значимых в народнохозяйственном плане представителей. □ В аналогичном ключе характеризовать важнейших представителей других классов органических соединений: метанол и этанол, сложные эфиры, жиры, мыла, альдегиды (формальдегид и ацетальдегид), кетоны (ацетон), карбоновые кислоты (уксусная кислота, для естественно-научного профиля представителей других классов кислот), моносахариды(глюкоза), дисахариды(сахароза), полисахариды (крахмал и целлюлоза), анилин, аминокислоты, белки, искусственные и синтетические волокна, каучуки, пластмассы. □ Использовать в учебной и профессиональной деятельности химические термины и символику. □ Называть изученные вещества по тривиальной или международной номенклатуре и отражать состав этих соединений с помощью химических формул. □ Отражать химические процессы с помощью уравнений химических
Химические реакции	реакций. □ Объяснять сущность химических процессов. Классифицировать химические реакции по различным признакам: числу и составу продуктов и реагентов, тепловому эффекту, направлению, фазе, наличию катализатора, изменению степеней окисления элементов, образующих вещества. □ Устанавливать признаки общего и различного в типологии реакций для неорганической и органической химии. □ Классифицировать вещества и процессы с точки зрения окисления-восстановления. Составлять уравнения реакций с помощью метода электронного баланса. □ Объяснить зависимость скорости химической реакции и положения химического равновесия от различных факторов.
Химический эксперимент	 □ Выполнять химический эксперимент в полном соответствии с правилами безопасности. □ Наблюдать, фиксировать и описывать результаты проведенного эксперимента.

Химическая	Проводить самостоятельный поиск химической информации с		
информация	использованием различных источников (научно-популярных изданий,		
	компьютерных баз данных, ресурсов Интернета);		
	🗆 использовать компьютерные технологии для обработки и		
	передачи химической информации и ее представления в различных		
	формах.		
Расчеты по	Устанавливать зависимость между качественной и количественной		
химическим	сторонами химических объектов и процессов.		
формулам и	Решать расчетные задачи по химическим		
уравнениям	формулам и уравнениям.		
уравнениям			
Профильное и	🛚 Объяснять химические явления, происходящие в природе, быту и		
профессионально	на производстве.		
значимое	□ Определять возможности протекания химических превращений в		
	различных условиях.		
содержание	Соблюдать правила экологически грамотного поведения в		
	окружающей среде.		
	□ Оценивать влияние химического загрязнения окружающей среды		
	на организм человека и другие живые организмы.		
	□ Соблюдать правила безопасного обращения с горючими и		
	токсичными веществами, лабораторным оборудованием.		
	□ Готовить растворы заданной концентрации в быту и на		
	производстве.		
	поступающей из разных источников.		

3.УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ 3.1.Учебно-методическое и материально-техническое обеспечение программы **учебной** дисциплины.

y 1coi	нои дисциплины.
No	Материально-техническое обеспечение занятий
п/п	
1	2
1	Проектор
2	Компьютер
3	Принтер « Canon»
4	Экран
	Модели
5	Набор кристаллических решеток: алмаза, графита, диоксида углерода, железа,
6	магния, меди, поваренной соли, йода, льда
	Набор для моделирования строения неорганических веществ
7	Набор для моделирования строения органических веществ
0	Коллекции
8	A managari
9	Алюминий
9	Волокна

10	Каменный уголь и продукты его переработки
11	Каучук
12	Металлы и сплавы
13	Минералы и горные породы
14	Нефть и важнейшие продукты ее переработки
15	Пластмассы
16	Стекло и изделия из стекла
17	Топливо
18	Чугун и сталь
19	Шкала твердости

Информационное обеспечение обучения

Основные источники (ОИ):

№ п/п	Наименование	Автор	
ОИ1	Химия 10 класс (базовый уровень)	О.С Габриелян	2005
ОИ2	Химия 11 класс (базовый уровень)	О.С Габриелян	2005
ОИЗ	Химия 10 класс (профильный уровень)	О.С Габриелян	2005
ОИ4	Химия 11 класс (профильный уровень)	О.С Габриелян	2005

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для студентов

Габриелян О.С. Химия для профессий и специальностей социально-экономического и гуманитарного профилей: учебник / О.С. Габриелян, И.Г. Остроумов. – М.: 2014

Габриелян О.С. Химия для профессий и специальностей технического профиля: учебник / О.С. Габриелян, И.Г. Остроумов. – М.: 2014

Габриелян О.С. Химия для профессий и специальностей естественно научного профиля: учебник / О.С. Габриелян, И.Г. Остроумов. – М.: 2014

Габриелян О.С. Химия: учеб. для студ. проф. учеб. заведений / О.С. Габриелян,

И.Г. Остроумов. – М.: 2014

Габриелян О.С. Практикум: учеб. пособие / Габриелян О.С., Остроумов И.Г., Сладков С.А., Дорофеева Н.М. – М.: 2014

Габриелян О.С. Химия: пособие для подготовки к ЕГЭ: учеб. пособие / О.С. Габриелян, И.Г. Остроумов, С.А. Сладков. – М.: 2011

Ерохин Ю.М. , Ковалева И. Б. Химия для профессий и специальностей технического и естественно научного профилей. – М.: 2014

Ерохин Ю.М. Химия: Задачи и упражнения. – М.: 2014

Ерохин Ю.М. Сборник тестовых заданий по химии. – М.: Академия, 2014 Габриелян О.С. и др. Химия для профессий и специальностей технического профиля (электронное приложение)

Для преподавателя

Об образовании в Российской Федерации. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ

Приказ Минобрнауки России от 29 декабря 2014 г. № 1645 « О внесении изменений в приказ Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего (полного) общего образования».

Рекомендации по организации получения среднего общего образования впределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований

федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259).

Габриелян О.С. Химия для преподавателя: учебно-методическое пособие / О.С. Габриелян, Г.Г. Лысова. — М.: 2014

Габриелян О.С. и др. Химия для профессий и специальностей технического профиля (электронное приложение)

Интернет-ресурсы

pvg.mk.ru - олимпиада «Покори Воробьёвы горы» hemi.wallst.ru - «Химия. Образовательный сайт для школьников» www.alhimikov.net - Образовательный сайт для школьников

chem.msu.su - Электронная библиотека по химии

www.enauki.ru — интернет-издание для учителей «Естественные науки» 1september.ru - методическая газета "Первое сентября"

hvsh.ru - журнал «Химия в школе»

www.hij.ru/ -«Химия и жизнь»

chemistry-chemists.com/index.html - электронный журнал «Химики и химия»

4.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Результаты освоения учебной дисциплины – личностные, метапредметные, предметные.

Освоение содержания учебной дисциплины «Химия», обеспечивает достижение студентами следующих *результамов*:

личностных:
🗆 чувство гордости и уважения к истории и достижениям
отечественной химической науки; химически грамотное поведение в
профессиональной деятельности и в быту при обращении с химическими
веществами, материалами и процессами;
□ готовность к продолжению образования и повышения квалификации в
избранной профессиональной деятельности и объективное осознание роли химических
компетенций в этом;
□ умение использовать достижения современной химической науки
и химических технологий для повышения собственного интеллектуального развития в
выбранной профессиональной деятельности;
метапредметных:
□ использование различных видов познавательной деятельности и основных
интеллектуальных операций (постановка задачи, формулирование гипотез, анализ и
синтез, сравнение, обобщение, систематизация, выявление причинно-следственных
связей, поиск аналогов, формулирование выводов) для решения поставленной задачи,
применение основных методов познания (наблюдение, научный эксперимент) для
изучения различных сторон химических объектов и процессов, с которыми
возникает необходимость сталкиваться в профессиональной сфере;
□ использование различных источников для получения химической
информации, умение оценить её достоверность для достижения хороших
результатов в профессиональной сфере;
предметных:
□ сформированность представлений о месте химии в современной научной
картине мира; понимание роли химии в формировании кругозора и функциональной
грамотности человека для решения практических задач;
🗆 владение основополагающими химическими понятиями,
теориями, законами и закономерностями; уверенное пользование химической
терминологией и символикой;
🗆 владение основными методами научного познания,
используемыми в химии: наблюдение, описание, измерение, эксперимент; умение
обрабатывать, объяснять результаты проведённых опытов и делать выводы; готовность
и способность применять методы познания при решении практических задач;
□ сформированность умения давать количественные оценки и
проводить расчёты по химическим формулам и уравнениям;
□ владение правилами техники безопасности при использовании
химических веществ;
□ сформированность собственной позиции по отношению к

химической информации, получаемой из разных источников.